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Propagation and kinetic roughening of wave fronts in disordered lattices
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The dynamics of a wave front propagating in diluted square lattices of elastic beams is analyzed. We
concentrate on the propagation of the first maximum of a semi-infinite wave train. Two different limits are
found for the velocity depending on the bending stiffness of the beams. If it vanishes, a one-dimensional chain
model is derived for the velocity and the amplitude is found to decrease exponentially. The first maximum is
localized and the average width of the wave front is always finite. For very stiff beams an effective-medium
model gives the correct velocity and the amplitude of the first maximum decays according to a power law. No
localization of the first maximum is observed in the simulations. In this limit scaling arguments based on
Huygen'’s principle suggest a growth exponent of 1/2, and a roughness exponent of 2/3. The growth exponent
fits the simulation data well, but a considerably lower roughness expdfestis obtained. There is a
crossover region for the bending stiffness, wherein the wave-front behavior cannot be explained by these
limiting cases[S1063-651X97)10610-9

PACS numbe(s): 46.10+z, 68.35.Ct, 62.30:d

[. INTRODUCTION One may then ask the question whether wave-front rough-
ening can be characterized by the usual universality classes,
Propagation of a wave front in a homogeneous and condespite being governed at long time scales by the Huygens'’s
tinuous medium is rather well understood within elasticity principle. Consider the simplest growth problems with ther-
theory[1]. Wave propagation in a regular lattice is likewise mal noise: the random depositiodRD) model[6], the model
well understood2]. Almost all real materials, however, con- described by the Edwards-WilkinsggW) equation 7], and
tain some kind of disorder such as random microcracks othe model described by the Kardar-Parisi-ZhdK§Z) [8]
structural defects. This complicates the situation and interesequation. The RD universality class describes a set of inde-
ing phenomena such as localizati@] appear. Disorder also pendent one-dimensional random walks in the direction of
affects the average wave-propagation velocity and the behawave propagation. This means that roughness grows indefi-
ior of the wave’s amplitude. nitely and 8=1/2. It is quite obvious that no independent
We consider here randomly diluted beam lattices as disene-dimensional paths exist in elastic square lattices, except
crete models of elastic solids. As will be demonstrated bein special cases such as when the bending stiffness of the
low, both the amplitude decay and the velocity in randomlybonds vanishes, and therefore the RD model is usually irrel-
diluted lattices can in many cases be found as a function ofvant in wave-propagation problems.
the dilution parameter. Note that this is made feasible by Inthe EW and KPZ universality classes there is a surface
considering just the first maximum of the wave front, which diffusion term leading to self-affinity and saturation of the
is much less susceptible to interference. Effects of disorderoughness in a finite system. The KPZ equation describes
on amplitude and velocity are, however, just the first charackinetic roughening in cases in which local growth always has
teristics of the wave dynamics. In order to go beyond thata finite velocity perpendicular to the interface. As such, one
we will investigate in detail also the statistical geometry ofcould expect it to be relevant for our problem as indeed is the
the wave fronts in terms of their scaling behavior. case for scattered, directed classical wd@sWe will show
Consider an initially straight wave front. After encounter- below, however, that neither the KPZ nor the EW model is
ing defects in the medium it will roughen, and the questionapplicable to roughening of wave fronts propagating in a
then is how this happens as measured, e.g., by consideridgttice. The only ordinary behavior that can be found be-
the behavior of the average width of the wave front. Thelongs, suprisingly enough, to the RD class, which explains
physics behind such changes of shape is best understood the short-time behavior of the wave-front roughness. For the
connecting it to the recently much studied concept of kineticasymptotic behavior, we employ a special argument appli-
roughening of growing interfaces. Interface growth modelscable to interface propagation obeying the Huygens prin-
usually give rise to self-affine interfacg4,5], confined to a  ciple.
few universality classegt] depending on the symmetries of  In the rest of the paper, we begin by describing in detail
the models. The scaling of self-affine interface growth can behe lattice model in Sec. Il. Section Il is devoted to analyti-
characterized by an initial regime, with a roughnédss cal considerations of velocities and amplitude decay of the
wave-front width r) proportional to ret?, and by an waves. In Sec. IV we compare analytical results with nu-
asymptotic regime, characterized by LX, wherelL is the  merical simulations, and in Sec. V we analyze the roughen-
linear system size. In the asymptotic regime the correlatioring of the wave front. Section VI contains conclusions and a
length along the front is of the order of the system size.  discussion.
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Il. LATTICE MODEL M C oM

. . + —|U(t+At)= —K|U(t
We study a numerical lattice model because of two rea- [E ZAJ ( ) [EZ } ®
sons: They are efficient from a numerical point of view and

represent a straightforward discretization of a brittle solid - ﬂz— ——|U(t—At),
obeying the Cosserat elasticity equatid®,11. A discrete At® 2At

lattice can also be considered as a model of a granular ma- . . . - .
terial, in which the lattice sites represent the grains and th&/nereM is the diagonal matrix containing the massésis
lattice bonds represent the elastic interactions between tH8€ damping matrix, which is also diagonal, aKdis the
grains. We use a square lattice where the lattice bonds a@ioba! stiffness matrix. The time dependent displacement
elastic beams with a square cross sectidn lengthl, and field is cg_lcu_lated by iteration of time _stepmo starting
Young modulusE. The elastic deformation of a bond is from equilibrium att=0. We follow the first wave front by

determined by the matrix equatia?] rgcor(_jing the time wht_'-zn each site in Fhe lattice reaches its
first displacement maximum. The location of the front is de-
IszTK|TO 1) fined for each lattice row separately so that it is at the site in

the row that was the lagbefore a given timeto reach its

where the vectoF contains the forces and angular momentafirSt displacement maximum. Disorder is introduced by re-
9 moving randomly a fraction £ p of the bonds.

acting on the two ends of the borifljs a rotation matrix that
transforms the local coordinate system of the béae, the
x axis along the beam ajisto the global coordinate system

of the lattice, andJ is the vector containing the displace-

Ill. VELOCITY AND ATTENUATION
OF ELASTIC WAVE FRONTS

ments related to the forces and moment# iriThe stiffness A. Anisotropic bond stiffness
matrix K, in the local coordinate system is given by First we will derive an approximate solution for the aver-
age propagation velocity and the average amplitude decay of
Ki the wave front when either the bending or the axial stiffness
EA “EA of the bonds is much smaller than the other. The boundary
—_ 0 0 _ 0 0 conditions have been chosen so that the wave front is, in a
! I statistical sense, invariant under transformations inytta-
12E] 6EI —12EI 6El rection. Therefore, it is possible to use a one-dimensional
0 N 0z 0 3 7 model to describe the wave-propagation velocity. The first
displacement maximum travels along paths of bonds that are
0 ﬁ E 0 —6El E oriented in thex direction. These paths are connected via
12 I 12 [ vertical bonds. Consequently, if the bending stiffness of the
=| _ EA EA »  bonds is much smaller than their axial stiffness, the vertical
_ 0 0 —_ 0 0 bonds will not affect much the velocity of this wave front
! I (i.e., for longitudinal waves induced at the left boundary of
—12El —6El 12El1 —6El the lattice and vice versa for transverse wavésthis case,
0O —3— — 0  —3 2 the velocity can be calculated b roximating the latti
| | | | y can be calculated by approximating the lattice

with an ensemble of noninteracting paths of bonds. The

0 ﬁ E 0 —6El E equations of motion for such paths are simple one-
12 I 12 I dimensional wave equatiorfa/ith zero dissipation
where A=w? and the moment of inertia is=w*/12. This ﬂ—mz@—o @)
stiffness matrix holds for small displacements of a slender dt? dx? =

beam(i.e., shear deformations and nonlinear effects are ne-
glected. The equation governing the elastic response of thavhereu(x,t) are the displacements from equilibrium of the
entire lattice is easily constructed by summing the stiffnessites,| is the length of a lattice bond=Ew?/| for axial
matrices K,) for all the bonds in the lattice. Inertia is intro- displacements, ankl=(w/I)2Ew?/| for transverse displace-
duced in the lattice by having masseson the lattice sites, ments. The latter is the bending stiffness of a beam with
while the beams are assumed to be massless. Periodic bourelamped ends, which can be used if the moment of inertia of
ary conditions are used in the vertical)(direction(parallel  the sites is large. To cross the lattice from one side to the
to one of the principal bond directionsThe right boundary other, the wave front will have to travel a distaricgin the
is free to move without constraints and the sites at the lefk direction with a local velocity, . At each missing hori-
boundary are forced to move harmonicdlBgsin(wt)] either ~ zontal bond, the wave will have to travel at least one unit
in thex or in they direction when the timé>0. We always step in the vertical direction. Whemis far above its critical
use frequencies that are lower than the lowest eigenfrevalue at percolation, only small connected clusters of miss-
guency of the lattice bonds. The entire lattice is at rest foing bonds are present. In this case, the probability that at any
t<0. lattice site the wave will have to travel at least a step in the
The dynamics of the lattice is calculated using a discretevertical direction is approximately-2p. The probability for
form of Newton’s equations of motion including a small lin- moving at least two steps vertically is approximately
ear viscous dissipation term, (1—p)?, etc. Thus we approximate the vertical travel dis-
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tance byL,~L,>/_;(1—p)". The local velocity in this di- E=Eq{p—[(2-2p)+(2p—1)Va/b](1-p)}, (5)
rection is v,. The velocitiesv, and v, are given by

vy=VEW?/m andv,=w/l JVEW?I/m for induced longitudi- and the corresponding effective shear modulus in the form
nal wavedand vice versa for transverse waj€Ehe average

wave-front velocity of a longitudinal wave induced at the left v=wo{p—[(2—2p)+(2p—1)\b/al(1-p)}, (6)

boundary of the lattice is then given by
where E; and vy are the Young modulus and the shear

Ewll/m modulus of the perfect lattice. Since the Poisson ratio is zero
v1(P)= [—— (3 for a square lattice, the velocity of induced longitudinal
1+(Up—D)l/w

waves is given by

and the corresponding velocity of an induced transverse \/EW2|
U=

wave by m

Ew?l/m and the velocity of induced transverse waves by
vi(P) =W\ /- 4
1+ (1p—21)w/l

W\/EW2| w
Ve o [P~ (2—2p)+(2p—1)|—)(1—p).

B. Effective-medium theory for isotropic bond stiffness ®)

I
p—((2—2p>+<2p—1>w)<1—p>} @

As already mentioned, Eq3) [Eq. (4)] is expected to )
hold when the bendinfaxial] stiffness is so small that lon- ~ Both Egs.(3) and (4) and Egs.(7) and (8) predict the
gitudinal [transversgwaves can be considered to propagatecorrect velocities fop=1. At the percolation critical point
along noninteracting paths. This means that the lattice wil(P=0.5) the wave-front velocity is zer(the shortest con-
not reach a local elastic equilibrium during the passage of th@ected route in a network is fractal at this pginat and
first displacement maximum. If, on the other hand, the bendclose to this point the model of one-dimensional paths fails.
ing stiffness of the bonds is roughly equal to their axial stiff- The effective-medium model predicts the velocity correctly
ness, the lattice will locally remain at an elastic equilibriumat the critical point itsel{the mean-field critical point is ex-
if the wavelength is not very short. In such a case the latticéct for the two-dimensional square latficbut it fails within
will behave as an effectively homogeneous material and théhe critical region close to the critical point. A better result
wave-front velocity is determined by the effective Young Within this region could, at least in principle, be obtained
modulus and the effective Poisson ratio of the lattice. using the renormalized effective-medium approximation
The effective Young modulus can be calculated within thel 15].
effective-medium approximatiopl3]. If one assumes that
the elastic deformation of a bond is completely determined C. Attenuation
by a single constant, the elasticity of a Iatticg is fo.rmally.the In the case of anisotropic bond stiffness the sawtooth
same as the electric conductance of the lattice with 1esiStolg, o model can be applied again for estimating the ampli-
replacing the elastic beams. If the bending stiffness is differ

) N . ; ude decay as a function qf. As long as the wave front
ent from the axial one, it is required that a bond is deforme(i y o g

. ) . . ~Travels along an unbroken horizontal chain of bonds, the am-
through either bending or gtretchmg for the formal 5|m|[ar|ty litude remains more or less constant. When the wave front
to hold. In such a case, a fiber that is only bent is considere

to h duct hich ds 1o the bendi eets a missing bond, it must switch to a neighboring row
0 have a conductands which corresponds to the ending \ypich takes some time. Meanwhile the wave front propagat-
modulus, and a bond that is only stretched has a conductan

. . . . .ﬁ?g along that neighboring row has propagated past the part
a, which corresponds to the axial modulus. Notice that this IS¢ the front that switches row. Thus part of the energy of the

the so-called Born modé¢lL4] of elasticity. f S - :
. ‘ . . ont propagating in the original row is delayed and we can
For a square lattice with boundary conditions as descrlbeé propagaing 9 Yy

Lo ) . ssume that the amplitude is reduced to a fractioof its
above, it is reasonable to assume that, for induced longitudi;| e at each missing borfde assume here that one wave-

nal waves, the vertical bonds are only bent and the horizont%ngth covers only one or at most a few missing horizontal

bonds are only stretched. The effective-medium approximabondg_ With y being constant the amplitude decays expo-
tion is based on the direction symmetry of the current ﬁeldnentially The decay as a function wfis then given by
caused by a point source in an infinite lattjd&]. This sym- '

metry holds only whera=b. In the case whema#b the A(X)=Agexd — (1—p)(1— y)x]. 9)
situation is somewhat complicated. Wheris close to unity

the correct solution is obtained by scaling theélirection by  There also appears backscattering from missing bonds. In the
a factor \Jb/a. On the other hand, whep is close to the case of the first maximum of the propagating wave train this
percolation threshol@= 0.5 for a square lattigewe expect effect is negligible, however.

the direction symmetry to be valid independentacndb. In the case of isotropic bond stiffness the effective-
In our effective-medium solution we use a linear interpola-medium approximation is expected to hold. In this approxi-
tion between these two extremes. mation, the network is considered as homogeneous, which

Carrying out the effective-medium calculation as in Ref.implies that there will be no amplitude decay at all. How-
[13] gives the effective Young modulus of the lattice in the ever, we must take into account that the network is discrete
form and therefore dispersion of velocities appears. We have
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FIG. 1. Average wave-front propagation velocities of longitudi-  FIG. 3. Average velocity of a longitudinal wave front as a func-
nal waves in lattices with=1; m=0.005,0.01;w=0.3,0.61.0;  tion of the driving frequency with=1, m=0.1, w=0.3, p=0.9,
E=1.0; and the frequency 0.125. The corresponding velocities cal@ndE=1.0. The upper and the lower lines are the prediction by the
culated from the effective-medium approximatiBMA) and the  €ffective-medium approximation and the model of one-dimensional
one-dimensional path modélDPM) are shown by dotted and solid Paths, respectively.
lines, respectively. . . . . .
simulation data well when the bond stiffness is isotrdpi.,
shown[16] that, in a perfect square lattice, the dispersiveW=1=1.0). It is also evident that the model of one-

widening of the wave front causes a power-law decay of th&limensional path follows perfectly the simulation results for
form [16—19 slender bondsw=0.3) whenp>0.75. For smallerp the

model fails as expected. In the intermediate case- (.6)
A(x)ocx 13, (10 none of the models gives a very good result. Only close to
p=1 does the model of one-dimensional paths give the cor-
In disordered lattices with=< 1, this type of decay should be rect velocity. In both Figs. 1 and 2 also the renormalized
observed at least for long wavelengths. effective-medium approximatiofREMA) solution is shown.
As can be seen, the REMA solutions differ only a little from
the EMA solutions, which indicate that the scaling regimes

) ) are small.
The analytical results Eq$3) and(7) are compared with In Fig. 2 similar results are shown for the transverse

simulation results in Fig. 1 and a similar comparison for Eqsayes. The effective-medium model works also in this case
(4) and(8) is shown in Fig. 2. As can be seen from Fig. 1, {5y \y<1. The model of one-dimensional paths gives the cor-
the effective-medium approximatiofEMA) follows the rect velocity for broad beamsm=2.5) whenp is close to
unity. We also expect that there should be a crossover be-
tween the two model velocities with a changing driving fre-
quency. This crossover is, however, difficult to observe nu-

D. Numerical analysis of wave-front progation

16 . —

0.6 v merically. This is mainly because of the relatively small
14} 1.0 e difference between the two solutions. To complete the pic-
12 2.5 e ture, we show nevertheless in Fig. 3, how the velocity

REMA ....

changes with frequency in the case of longitudinal waves for
w=0.3 andp=0.9. This figure demonstrates a clear trend of
. increasing velocity at lower frequencies. Notice, however,
that the effective-medium model is not very accurate for
these parameter values and a 2.5% difference between the
s simulated velocity and the EMA prediction remains even at
e the lowest frequencies.
N Next we test numerically the amplitude decay, i.e., Egs.
(9) and(10). In Fig. 4 we show the amplitudé& as a function
of x for different values of +p. The parameters used are
=1, m=0.0001, w=0.1, andE=1.0. The frequency is
0.125.A(x) is reasonably well approximated by an exponen-
tial decay[Eq. (9)] for smallx. A crossover from the expo-
FIG. 2. Average wave-front velocities of transverse waves innential to a less rapidly decaying behavior can be seen for
lattices withl =1; m=0.01,0.06;w=0.6,1.02.5; E=1.0; and the largex and large }p. This crossover phenomenon is an
frequency 0.0125. The corresponding velocities calculated from thartifact of the dispersion relatiofi6]. As the effective fre-
EMA and the 1DPM are shown by dotted and solid lines, respecquency of the first displacement maximum decreases, the
tively. amount of reflection also decreas@®., y increasep and

10}
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FIG. 4. Average amplitude of the wave front as a function of the ~ FIG- 6. Distance of the sites in a network of size X650 as a
distance with =1 m=0.0001: function of the time when the site reaches its first displacement

w=0.1,1-p=0.05,0.1,0.15,0.2,0.25,0.3; anB=1.0. The fre- Maximum with|=1, m=001, w=0.1, E=1.0, p=0.9, and the
quency is 0.125. The inset shows the fitted exponents as a functidfduency 0.0125. The lines are given by E8). with p=0.9 and
of 1-p. p=1.

160X 160 in lattice units. The network parameters brel,
eventually the frequency of the wave front becomes so smath=0.01, w=0.1, p=0.9, E=1.0, and frequency 0.125.
that the lattice will locally remain at equilibrium and the Two velocity branches appear. The slower velocity is well
amplitude will decrease only according to Efj0). The inset  predicted by Eq(3) (the lower line in the figurg while the
in Fig. 4 proves that the exponent in E®) is indeed pro- faster velocity(the upper line in the figujeis the velocity
portional to the dilution parameter-1p for small x. The that would appear in the perfect lattifee., Eq.(3) or (7)
power-law decay for broader fibefs=1, m=1.0, w=1.0, with p=1]. The faster signal dies out before the opposite

andE=1.0) is demonstrated in Fig. 5. The amplitude decayend of the system is reached. This can also be seen in Fig. 7,
follows well Eq. (10) for large enougtx. where the amplitudes are plotted as a function of the dis-

Figures 1-5 support the velocity and amplitude decay@nces from the left edge of the lattice for the same data as in
predictions by the one-dimensional and the effective mediunf'9- 6. This figure shows that the amplitude of the faster
models in their respective regions of validity. The simula-Signal decreases exponentially, while the amplitude of the
tions revealed, somewhat suprisingly, also a third wave-fronflOWer signal decreases much slower for largee., accord-
velocity. This velocity does not depend on the average propiNd t0 Eq. (10)]. The fast transients are essentially signals
erties of the lattice, but is instead a transient that propagatd§@t travel along short pieces of unbroken straight chains of
only a short distance and takes advantage of the fastest route€@ms- Their exponential decay is caused by couplings to the
that exist. This is demonstrated in Fig. 6. The distances ofurroundings via the vertical bonds. The dynamics of this
the lattice sites from the left edge of the lattice are plotted irfansient signal will be reported in more detail in Reff6].
this figure as a function of the arrival time of the first dis-

placement maximum at these sites. The lattice size is IV. WAVE-FRONT ROUGHENING
So far we have only considered the mean velocity of the
0.0001 : . . wave front. This does not, however, describe the dynamics
0.0001
1075 [
1078 TIE . i |
2 109 | il
X 107
<
-, _
10'9 3
1076 . .
10 100 1000 )
X 10-10 , | . , . s .
0 20 40 60 80 100 120 140 160

FIG. 5. Amplitude of the wave front as a function of distance X

with 1=1; m=1.0; w=1.0; p=0.7,0.8; andE=1.0. The fre- FIG. 7. Variation of the amplitude with the distance for the data
quency is 0.125. The fitted lines are given by EL)). of Fig. 6.
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FIG. 9. Roughness in lattices with=1; m=10"% w=0.001;
E=1.0; p=0.7,0.8,0.9, and the frequency 0.125. The lines are
given by Eq.(12).

havior is encountered. We believe that this is due to the fact
that the wave-front velocity behaves differently in the two
limits, as explained above. The situation is further compli-
cated by the appearance of the transient veldcityFig. 6).

In the limit of a vanishing axial or bending stiffness, it is
possible to calculate the dynamics of the roughening exactly.
In the case of longitudinal waves and vanishing bending
stiffness, the wave will travel poorly in thedirection along
the vertical bonds and the wave front can be considered to
travel along independent straight paths until a missing bond
is encountered and the propagation stops. This means that
the average velocity will decrease exponentially with time
(t). The average location of the wave froxt(t) is then
given by

%ETT

L1
=
L N
LLM%

it

| il
b

) T
jJuJJ_'l_+

'-ii/Fl

T
ATER
S Yl

p(1-ph
1-p

, (11)

Xm(t)=

wherev is the wave velocity in the case wher=1 [given
by Egs.(3) and(7)]. Whent— o, x,, will approach the value
p/(1—p). The roughness(t) of the wave front is given by

r2(t)(1-p)?=p[1-p°" 11— p"* ]+ [p—p?+2p""]
X[1—(vt+1)p* +ovtp’ ]+ p3(1—p)

h
|

T

.|
=

2

?
%ﬁ R

Xvt(vt+1)[pt—pt 1. (12)

When t— the roughnessr(t) approaches the value

FIG. 8. Wave-front locatior(thick lineg at different times in Jp/(1—p), which holds for allp except forp=1. A com-
lattices with (top) w=0.001 andp=0.98, (middle) w=1.0, and  parison of Eq(12) with numerical results is shown in Fig. 9.
p=0.7, and(bottom w=20.0 andp=0.7. In this figurel=1, m=10"%, w=0.001, E=1.0, and the

frequency is 0.125. It is evident that E@.2) fits the simu-

of the front completely. Caused by the disorder, the initiallylation results very well. Two further observations can also be
straight front will get rough as it propagates. This is demon+made based on the Fig. 9: There is, in terms of the usual
strated for three examples in Fig. 8. The wave fronts propainterface growth models, a trivial pinning transition that
gate from left to right; as time evolves the initially flat fronts takes place in the infinite time limit and the interface width
become more and more complicated. Notice the difference idoes not depend on the system size. Interface dynamics is
roughness between the last two cases, arising from a mudhus similar to that of the random deposition model, in which
higher bending stiffness in the latter. local fluctuations set the time dependence.

It would be reasonable to expect that the roughening of With a nonzero bending stiffness the situation becomes
the wave front would belong to one of the usual universalityimmediately more complicated. At early enough times the
classes. Simulations show, however, that this is not the cas&ont behavior may in some cases be of the Edwards-
Instead, if one considers in a similar fashion the early timeWilkison type (8~1/4), i.e., there is a parallel correlation
and the asymptotic interface widths, a very complicated belength along the interface dictated by diffusive dynamics. At
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FIG. 10. Wave front at ten different times in a network with ~ FIG. 11. Averaged wave-front roughness as a function of time
bonds only diluted in the shaded square close to the left boundary) lattices withp=0.7 and vertical heights,=30,60,90,120) =1,
I=1, m=0.01, andw=1.0. m=1.0,w=1.0,E=1.0, and the frequency is 0.125. The fitted line
is given byr (t)<t2. The inset shows the same data on a semiloga-
|Jr]ithmic scale, with they axis rescaled by. ~%5,
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longer time scales, however, there is no typical saturatio
behavior manifested by a size-dependent interface width. _ . . . . . .
We next consider the case when the bending and axid[! @ lattice of linear sizé tgf maximum height difference is
stiffnesses are equal. In this case we are not able to calculal erefore propo_rtlonal @, which means that the r_ough-
the roughness exactly. We expect, however, that the latticBESS exponent is 2/3. The corresponding crossover time scale
will behave more or less like a continuous medium with'S
randomly located holes. Then the wave-front roughness 413
should be governed by the Huygens principle. This is dem- Lerossove? Xg 70 - (16)
onstrated in Fig. 10. The wave-front patterns in this figure i )
are not exactly spherical shapes as predicted by the Huygef¥nat was not taken into account above, however, is the ef-
principle, but a slight distortion of the shape is expectedfeCt",’e decrease in the freque_ncy of the f|_rst dlsplacem_ent
because the effective stiffness of the network is lower thaf@Ximum. For lower frequencies, the details of the lattice
the average close to a hole. Furthermore, the velocity is ndi'® Not as easily “felt” by the wave front. Intuitively, we
quite isotropic, which also causes a distortion of the normalVould expect this effect to have a decreasing effect on the
spherical shape. r(_)ughn_ess. In Fig. 11 we show t_he roughness obtained by
The roughness of an interface governed by the Huygen§imulations for networks Of_ sizes  3B00, 60<300,
principle has been analyzed earlier as a model of sputtet?<300, and 12&300, withm=w=E=1.0, p=0.7, and
deposition for amorphous film{€0]. A rough interface will the frequency 0.125. The first wave front leaves the left edge
be subject to a smoothing effect caused by the lateral, sy2f the network at=2. As can be seen from the figure, the
chronous growth of peaks on the interface. This will causdransient signal affects the roughness of the fronttfod0.
height differencessh, a distancex, apart, to be smoothened For 10<t<50 the roughness grows diffusively according to

out in a timet such that t'2 as predicted by Eq14). For late times the roughness
decreaseswhich demonstrates that the decreasing frequency
shecx3lut, (13 0

10 e

wherev is the interface propagation velocity. Roughening of

the interface will be induced by the uncorrelated random

vacancies in the lattice. The average height fluctuations, re-
sulting from this uncorrelated noise, will increase like

{0V
3

Shoc (1) Y2 (14) 17

The roughness of an initially flat interface, induced by miss-

ing bonds, will therefore increase like:t'2>. Roughness will 10

then, however, reach a state when there is a balance between

the two opposite mechanisms described by EG8) and

(14). This happens when FIG. 12. Averaged wave-front roughness as a function of time
in TLM lattices with p=0.85 and vertical heights

2 ) 213 L,=30,60,120,240; the driving frequency is 0.314. The dashed line
Shoxp/(8h)“= shoexg™. (19 s given byr(t)=t'2

-2
10

T 1(')2 T3
t

10
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of the wave front has a strong effect on roughness. Thén the limit of vanishing axial or bending modulus, a one-
roughness exponent 2/3 fits the data for the two largest syslimensional model correctly describes the dynamics of the
tems of Fig. 11, but the two smaller systef@9x 300, and wave front. When the bending and the axial moduli are
60X 300 have an asymptotic roughness that is too high taoughly equal, an effective-medium approximation com-
follow Eq. (15). We expect that these two small systems arepined with continuum elasticity theory is sufficient for de-
not yet in the scaling region. The roughness exponent thaicribing the wave-front propagation.
fits best all the simulation data is therefore smaller than 2/3 The roughness of the wave front can be exacﬂy calculated
(i.e., around 0.5 which is demonstrated by the inset in Fig. i the limit of a vanishing axial or bending modulus. In this
11. _limit the first wave front is always localized and the average
To further test Eqs(14) and(15) we also used a numeri- \yave front width is finite. As the time evolution is governed
cal algorithm([transmission line methodTLM) wave au- ., pgissonian fluctuations, this is a random-deposition—
tomat'oﬂ, that SOM?S th? c!assmal wave equation by dlrectlyequivalent phenomenon for wave fronts. For beams that have
applying Huygens's principlg21]. Using this model, we a nonvanishing bending stiffness, the two-dimensional char-

again found that roughness grows diffusivety’9), but the : .
. . acter of wave propagation makes the roughening process re-
roughness exponent is lower than the 2/3 predicted by Eq; " PN )
mble ‘“standard” kinetic roughening phenomena. How-

glg)(lﬁ‘gbelszt) fitto the data gave a roughness exponent alrounever, the dynamic behavior cannot be mapped to the standard

models, except perhaps at early times.

For roughly equal bending and axial moduli, the wave-
front roughness grows initially like*2. For late times, Huy-

In summary, we have demonstrated that the propagatiogens’s principle suggests a roughness exponent 2/3, but
velocity and the amplitude decay of the first displacemensimulations gave an exponent close to 0.5. This discrepancy
maximum in randomly diluted square lattices of elasticis still not fully understood but is probably due to finite-size
beams can be largely understood within two simple modelseffects.
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