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Propagation and kinetic roughening of wave fronts in disordered lattices
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The dynamics of a wave front propagating in diluted square lattices of elastic beams is analyzed. We
concentrate on the propagation of the first maximum of a semi-infinite wave train. Two different limits are
found for the velocity depending on the bending stiffness of the beams. If it vanishes, a one-dimensional chain
model is derived for the velocity and the amplitude is found to decrease exponentially. The first maximum is
localized and the average width of the wave front is always finite. For very stiff beams an effective-medium
model gives the correct velocity and the amplitude of the first maximum decays according to a power law. No
localization of the first maximum is observed in the simulations. In this limit scaling arguments based on
Huygen’s principle suggest a growth exponent of 1/2, and a roughness exponent of 2/3. The growth exponent
fits the simulation data well, but a considerably lower roughness exponent~0.5! is obtained. There is a
crossover region for the bending stiffness, wherein the wave-front behavior cannot be explained by these
limiting cases.@S1063-651X~97!10610-9#

PACS number~s!: 46.10.1z, 68.35.Ct, 62.30.1d
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I. INTRODUCTION

Propagation of a wave front in a homogeneous and c
tinuous medium is rather well understood within elastic
theory @1#. Wave propagation in a regular lattice is likewis
well understood@2#. Almost all real materials, however, con
tain some kind of disorder such as random microcracks
structural defects. This complicates the situation and inter
ing phenomena such as localization@3# appear. Disorder also
affects the average wave-propagation velocity and the be
ior of the wave’s amplitude.

We consider here randomly diluted beam lattices as
crete models of elastic solids. As will be demonstrated
low, both the amplitude decay and the velocity in random
diluted lattices can in many cases be found as a functio
the dilution parameter. Note that this is made feasible
considering just the first maximum of the wave front, whi
is much less susceptible to interference. Effects of disor
on amplitude and velocity are, however, just the first char
teristics of the wave dynamics. In order to go beyond th
we will investigate in detail also the statistical geometry
the wave fronts in terms of their scaling behavior.

Consider an initially straight wave front. After encounte
ing defects in the medium it will roughen, and the quest
then is how this happens as measured, e.g., by conside
the behavior of the average width of the wave front. T
physics behind such changes of shape is best understoo
connecting it to the recently much studied concept of kine
roughening of growing interfaces. Interface growth mod
usually give rise to self-affine interfaces@4,5#, confined to a
few universality classes@4# depending on the symmetries o
the models. The scaling of self-affine interface growth can
characterized by an initial regime, with a roughness~or
wave-front width r ! proportional to r}tb, and by an
asymptotic regime, characterized byr}Lx, whereL is the
linear system size. In the asymptotic regime the correla
length along the front is of the order of the system size.
561063-651X/97/56~5!/6042~8!/$10.00
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One may then ask the question whether wave-front rou
ening can be characterized by the usual universality clas
despite being governed at long time scales by the Huyge
principle. Consider the simplest growth problems with th
mal noise: the random deposition~RD! model@6#, the model
described by the Edwards-Wilkinson~EW! equation@7#, and
the model described by the Kardar-Parisi-Zhang~KPZ! @8#
equation. The RD universality class describes a set of in
pendent one-dimensional random walks in the direction
wave propagation. This means that roughness grows ind
nitely and b51/2. It is quite obvious that no independe
one-dimensional paths exist in elastic square lattices, ex
in special cases such as when the bending stiffness of
bonds vanishes, and therefore the RD model is usually ir
evant in wave-propagation problems.

In the EW and KPZ universality classes there is a surf
diffusion term leading to self-affinity and saturation of th
roughness in a finite system. The KPZ equation descri
kinetic roughening in cases in which local growth always h
a finite velocity perpendicular to the interface. As such, o
could expect it to be relevant for our problem as indeed is
case for scattered, directed classical waves@9#. We will show
below, however, that neither the KPZ nor the EW model
applicable to roughening of wave fronts propagating in
lattice. The only ordinary behavior that can be found b
longs, suprisingly enough, to the RD class, which expla
the short-time behavior of the wave-front roughness. For
asymptotic behavior, we employ a special argument ap
cable to interface propagation obeying the Huygens p
ciple.

In the rest of the paper, we begin by describing in de
the lattice model in Sec. II. Section III is devoted to analy
cal considerations of velocities and amplitude decay of
waves. In Sec. IV we compare analytical results with n
merical simulations, and in Sec. V we analyze the rough
ing of the wave front. Section VI contains conclusions an
discussion.
6042 © 1997 The American Physical Society
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56 6043PROPAGATION AND KINETIC ROUGHENING OF WAVE . . .
II. LATTICE MODEL

We study a numerical lattice model because of two r
sons: They are efficient from a numerical point of view a
represent a straightforward discretization of a brittle so
obeying the Cosserat elasticity equation@10,11#. A discrete
lattice can also be considered as a model of a granular
terial, in which the lattice sites represent the grains and
lattice bonds represent the elastic interactions between
grains. We use a square lattice where the lattice bonds
elastic beams with a square cross sectionw2, length l , and
Young modulusE. The elastic deformation of a bond
determined by the matrix equation@12#

FW 5TTKlTUW , ~1!

where the vectorFW contains the forces and angular momen
acting on the two ends of the bond,T is a rotation matrix that
transforms the local coordinate system of the beam~i.e., the
x axis along the beam axis! into the global coordinate system
of the lattice, andUW is the vector containing the displace
ments related to the forces and momenta inFW . The stiffness
matrix Kl in the local coordinate system is given by

Kl

51
EA

l
0 0

2EA

l
0 0

0
12EI

l 3

6EI

l 2 0
212EI

l 3

6EI

l 2

0
6EI

l 2

4EI

l
0

26EI

l 2

2EI

l

2EA

l
0 0

EA

l
0 0

0
212EI

l 3

26EI

l 2 0
12EI

l 3

26EI

l 2

0
6EI

l 2

4EI

l
0

26EI

l 2

2EI

l

2 ,

whereA5w2 and the moment of inertia isI 5w4/12. This
stiffness matrix holds for small displacements of a slen
beam~i.e., shear deformations and nonlinear effects are
glected!. The equation governing the elastic response of
entire lattice is easily constructed by summing the stiffn
matrices (Kl) for all the bonds in the lattice. Inertia is intro
duced in the lattice by having massesm on the lattice sites,
while the beams are assumed to be massless. Periodic bo
ary conditions are used in the vertical (y) direction~parallel
to one of the principal bond directions!. The right boundary
is free to move without constraints and the sites at the
boundary are forced to move harmonically@A0sin(vt)# either
in thex or in they direction when the timet.0. We always
use frequencies that are lower than the lowest eigen
quency of the lattice bonds. The entire lattice is at rest
t<0.

The dynamics of the lattice is calculated using a discr
form of Newton’s equations of motion including a small lin
ear viscous dissipation term,
-
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Dt2 1
C

2Dt GU~ t1Dt !5F2M

Dt2 2K GU~ t !

2F M

Dt2 2
C

2Dt GU~ t2Dt !,

whereM is the diagonal matrix containing the masses,C is
the damping matrix, which is also diagonal, andK is the
global stiffness matrix. The time dependent displacem
field is calculated by iteration of time steps (Dt) starting
from equilibrium att50. We follow the first wave front by
recording the time when each site in the lattice reaches
first displacement maximum. The location of the front is d
fined for each lattice row separately so that it is at the site
the row that was the last~before a given time! to reach its
first displacement maximum. Disorder is introduced by
moving randomly a fraction 12p of the bonds.

III. VELOCITY AND ATTENUATION
OF ELASTIC WAVE FRONTS

A. Anisotropic bond stiffness

First we will derive an approximate solution for the ave
age propagation velocity and the average amplitude deca
the wave front when either the bending or the axial stiffne
of the bonds is much smaller than the other. The bound
conditions have been chosen so that the wave front is,
statistical sense, invariant under transformations in they di-
rection. Therefore, it is possible to use a one-dimensio
model to describe the wave-propagation velocity. The fi
displacement maximum travels along paths of bonds that
oriented in thex direction. These paths are connected v
vertical bonds. Consequently, if the bending stiffness of
bonds is much smaller than their axial stiffness, the verti
bonds will not affect much the velocity of this wave fron
~i.e., for longitudinal waves induced at the left boundary
the lattice and vice versa for transverse waves!. In this case,
the velocity can be calculated by approximating the latt
with an ensemble of noninteracting paths of bonds. T
equations of motion for such paths are simple on
dimensional wave equations~with zero dissipation!

m
d2u

dt2
2kl2

d2u

dx2 50, ~2!

whereu(x,t) are the displacements from equilibrium of th
sites, l is the length of a lattice bond,k5Ew2/ l for axial
displacements, andk5(w/ l )2Ew2/ l for transverse displace
ments. The latter is the bending stiffness of a beam w
clamped ends, which can be used if the moment of inertia
the sites is large. To cross the lattice from one side to
other, the wave front will have to travel a distanceLx in the
x direction with a local velocityvx . At each missing hori-
zontal bond, the wave will have to travel at least one u
step in the vertical direction. Whenp is far above its critical
value at percolation, only small connected clusters of m
ing bonds are present. In this case, the probability that at
lattice site the wave will have to travel at least a step in
vertical direction is approximately 12p. The probability for
moving at least two steps vertically is approximate
(12p)2, etc. Thus we approximate the vertical travel d
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tance byLy.Lx( i 51
` (12p) i . The local velocity in this di-

rection is vy . The velocities vx and vy are given by
vx5AEw2l /m andvy5w/ lAEw2l /m for induced longitudi-
nal waves~and vice versa for transverse waves!. The average
wave-front velocity of a longitudinal wave induced at the le
boundary of the lattice is then given by

v l~p!5A Ew2l /m

11~1/p21!l /w
, ~3!

and the corresponding velocity of an induced transve
wave by

v t~p!5w/ lA Ew2l /m

11~1/p21!w/ l
. ~4!

B. Effective-medium theory for isotropic bond stiffness

As already mentioned, Eq.~3! @Eq. ~4!# is expected to
hold when the bending@axial# stiffness is so small that lon
gitudinal @transverse# waves can be considered to propag
along noninteracting paths. This means that the lattice
not reach a local elastic equilibrium during the passage of
first displacement maximum. If, on the other hand, the be
ing stiffness of the bonds is roughly equal to their axial st
ness, the lattice will locally remain at an elastic equilibriu
if the wavelength is not very short. In such a case the lat
will behave as an effectively homogeneous material and
wave-front velocity is determined by the effective Youn
modulus and the effective Poisson ratio of the lattice.

The effective Young modulus can be calculated within
effective-medium approximation@13#. If one assumes tha
the elastic deformation of a bond is completely determin
by a single constant, the elasticity of a lattice is formally t
same as the electric conductance of the lattice with resis
replacing the elastic beams. If the bending stiffness is dif
ent from the axial one, it is required that a bond is deform
through either bending or stretching for the formal similar
to hold. In such a case, a fiber that is only bent is conside
to have a conductanceb, which corresponds to the bendin
modulus, and a bond that is only stretched has a conduct
a, which corresponds to the axial modulus. Notice that thi
the so-called Born model@14# of elasticity.

For a square lattice with boundary conditions as descri
above, it is reasonable to assume that, for induced longit
nal waves, the vertical bonds are only bent and the horizo
bonds are only stretched. The effective-medium approxim
tion is based on the direction symmetry of the current fi
caused by a point source in an infinite lattice@13#. This sym-
metry holds only whena5b. In the case whenaÞb the
situation is somewhat complicated. Whenp is close to unity
the correct solution is obtained by scaling they direction by
a factorAb/a. On the other hand, whenp is close to the
percolation threshold~p50.5 for a square lattice!, we expect
the direction symmetry to be valid independent ofa andb.
In our effective-medium solution we use a linear interpo
tion between these two extremes.

Carrying out the effective-medium calculation as in R
@13# gives the effective Young modulus of the lattice in t
form
e
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E5E0$p2@~222p!1~2p21!Aa/b#~12p!%, ~5!

and the corresponding effective shear modulus in the for

n5n0$p2@~222p!1~2p21!Ab/a#~12p!%, ~6!

where E0 and n0 are the Young modulus and the she
modulus of the perfect lattice. Since the Poisson ratio is z
for a square lattice, the velocity of induced longitudin
waves is given by

v l5AEw2l

m Fp2S ~222p!1~2p21!
l

wD ~12p!G ~7!

and the velocity of induced transverse waves by

v t5
w

l
AEw2l

m Fp2S ~222p!1~2p21!
w

l D ~12p!G .
~8!

Both Eqs.~3! and ~4! and Eqs.~7! and ~8! predict the
correct velocities forp51. At the percolation critical point
(p50.5) the wave-front velocity is zero~the shortest con-
nected route in a network is fractal at this point!. At and
close to this point the model of one-dimensional paths fa
The effective-medium model predicts the velocity correc
at the critical point itself~the mean-field critical point is ex
act for the two-dimensional square lattice!, but it fails within
the critical region close to the critical point. A better resu
within this region could, at least in principle, be obtain
using the renormalized effective-medium approximati
@15#.

C. Attenuation

In the case of anisotropic bond stiffness the sawto
chain model can be applied again for estimating the am
tude decay as a function ofp. As long as the wave fron
travels along an unbroken horizontal chain of bonds, the a
plitude remains more or less constant. When the wave fr
meets a missing bond, it must switch to a neighboring r
which takes some time. Meanwhile the wave front propag
ing along that neighboring row has propagated past the
of the front that switches row. Thus part of the energy of t
front propagating in the original row is delayed and we c
assume that the amplitude is reduced to a fractiong of its
value at each missing bond~we assume here that one wav
length covers only one or at most a few missing horizon
bonds!. With g being constant the amplitude decays exp
nentially. The decay as a function ofx is then given by

A~x!5A0exp@2~12p!~12g!x#. ~9!

There also appears backscattering from missing bonds. In
case of the first maximum of the propagating wave train t
effect is negligible, however.

In the case of isotropic bond stiffness the effectiv
medium approximation is expected to hold. In this appro
mation, the network is considered as homogeneous, w
implies that there will be no amplitude decay at all. How
ever, we must take into account that the network is discr
and therefore dispersion of velocities appears. We h
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56 6045PROPAGATION AND KINETIC ROUGHENING OF WAVE . . .
shown @16# that, in a perfect square lattice, the dispersive
widening of the wave front causes a power-law decay of th
form @16–19#

A~x!}x21/3. ~10!

In disordered lattices withp&1, this type of decay should be
observed at least for long wavelengths.

D. Numerical analysis of wave-front progation

The analytical results Eqs.~3! and~7! are compared with
simulation results in Fig. 1 and a similar comparison for Eqs
~4! and ~8! is shown in Fig. 2. As can be seen from Fig. 1,
the effective-medium approximation~EMA! follows the

FIG. 1. Average wave-front propagation velocities of longitudi-
nal waves in lattices withl 51; m50.005,0.01;w50.3,0.6,1.0;
E51.0; and the frequency 0.125. The corresponding velocities ca
culated from the effective-medium approximation~EMA! and the
one-dimensional path model~1DPM! are shown by dotted and solid
lines, respectively.

FIG. 2. Average wave-front velocities of transverse waves in
lattices withl 51; m50.01,0.06;w50.6,1.0,2.5; E51.0; and the
frequency 0.0125. The corresponding velocities calculated from th
EMA and the 1DPM are shown by dotted and solid lines, respec
tively.
e

.

simulation data well when the bond stiffness is isotropic~i.e.,
w5 l 51.0). It is also evident that the model of on
dimensional path follows perfectly the simulation results
slender bonds (w50.3) whenp.0.75. For smallerp the
model fails as expected. In the intermediate case (w50.6)
none of the models gives a very good result. Only close
p51 does the model of one-dimensional paths give the c
rect velocity. In both Figs. 1 and 2 also the renormaliz
effective-medium approximation~REMA! solution is shown.
As can be seen, the REMA solutions differ only a little fro
the EMA solutions, which indicate that the scaling regim
are small.

In Fig. 2 similar results are shown for the transver
waves. The effective-medium model works also in this ca
for w<1. The model of one-dimensional paths gives the c
rect velocity for broad beams (w52.5) whenp is close to
unity. We also expect that there should be a crossover
tween the two model velocities with a changing driving fr
quency. This crossover is, however, difficult to observe n
merically. This is mainly because of the relatively sm
difference between the two solutions. To complete the p
ture, we show nevertheless in Fig. 3, how the veloc
changes with frequency in the case of longitudinal waves
w50.3 andp50.9. This figure demonstrates a clear trend
increasing velocity at lower frequencies. Notice, howev
that the effective-medium model is not very accurate
these parameter values and a 2.5% difference between
simulated velocity and the EMA prediction remains even
the lowest frequencies.

Next we test numerically the amplitude decay, i.e., E
~9! and~10!. In Fig. 4 we show the amplitudeA as a function
of x for different values of 12p. The parameters used ar
l 51, m50.0001, w50.1, andE51.0. The frequency is
0.125.A(x) is reasonably well approximated by an expone
tial decay@Eq. ~9!# for small x. A crossover from the expo
nential to a less rapidly decaying behavior can be seen
large x and large 12p. This crossover phenomenon is a
artifact of the dispersion relation@16#. As the effective fre-
quency of the first displacement maximum decreases,
amount of reflection also decreases~i.e., g increases! and

l-

e
-

FIG. 3. Average velocity of a longitudinal wave front as a fun
tion of the driving frequency withl 51, m50.1, w50.3, p50.9,
andE51.0. The upper and the lower lines are the prediction by
effective-medium approximation and the model of one-dimensio
paths, respectively.



a
e

ay

a
iu
la
on
o
at
u

i
s-

.
ell

ite
g. 7,
is-
s in
ter
the

als
of
the

his

the
ics

the

cti

ce

ent

ta
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eventually the frequency of the wave front becomes so sm
that the lattice will locally remain at equilibrium and th
amplitude will decrease only according to Eq.~10!. The inset
in Fig. 4 proves that the exponent in Eq.~9! is indeed pro-
portional to the dilution parameter 12p for small x. The
power-law decay for broader fibers~l 51, m51.0, w51.0,
andE51.0! is demonstrated in Fig. 5. The amplitude dec
follows well Eq. ~10! for large enoughx.

Figures 1–5 support the velocity and amplitude dec
predictions by the one-dimensional and the effective med
models in their respective regions of validity. The simu
tions revealed, somewhat suprisingly, also a third wave-fr
velocity. This velocity does not depend on the average pr
erties of the lattice, but is instead a transient that propag
only a short distance and takes advantage of the fastest ro
that exist. This is demonstrated in Fig. 6. The distances
the lattice sites from the left edge of the lattice are plotted
this figure as a function of the arrival time of the first di
placement maximum at these sites. The lattice size

FIG. 4. Average amplitude of the wave front as a function of
distance with l 51; m50.0001;
w50.1,12p50.05,0.1,0.15,0.2,0.25,0.3; andE51.0. The fre-
quency is 0.125. The inset shows the fitted exponents as a fun
of 12p.

FIG. 5. Amplitude of the wave front as a function of distan
with l 51; m51.0; w51.0; p50.7,0.8; andE51.0. The fre-
quency is 0.125. The fitted lines are given by Eq.~10!.
ll

y
m
-
t

p-
es
tes
of
n

is

1603160 in lattice units. The network parameters arel 51,
m50.01, w50.1, p50.9, E51.0, and frequency 0.125
Two velocity branches appear. The slower velocity is w
predicted by Eq.~3! ~the lower line in the figure!, while the
faster velocity~the upper line in the figure! is the velocity
that would appear in the perfect lattice@i.e., Eq. ~3! or ~7!
with p51#. The faster signal dies out before the oppos
end of the system is reached. This can also be seen in Fi
where the amplitudes are plotted as a function of the d
tances from the left edge of the lattice for the same data a
Fig. 6. This figure shows that the amplitude of the fas
signal decreases exponentially, while the amplitude of
slower signal decreases much slower for largex @i.e., accord-
ing to Eq. ~10!#. The fast transients are essentially sign
that travel along short pieces of unbroken straight chains
beams. Their exponential decay is caused by couplings to
surroundings via the vertical bonds. The dynamics of t
transient signal will be reported in more detail in Ref.@16#.

IV. WAVE-FRONT ROUGHENING

So far we have only considered the mean velocity of
wave front. This does not, however, describe the dynam

on

FIG. 6. Distance of the sites in a network of size 1603160 as a
function of the time when the site reaches its first displacem
maximum with l 51, m50.01, w50.1, E51.0, p50.9, and the
frequency 0.0125. The lines are given by Eq.~3! with p50.9 and
p51.

FIG. 7. Variation of the amplitude with the distance for the da
of Fig. 6.
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56 6047PROPAGATION AND KINETIC ROUGHENING OF WAVE . . .
of the front completely. Caused by the disorder, the initia
straight front will get rough as it propagates. This is demo
strated for three examples in Fig. 8. The wave fronts pro
gate from left to right; as time evolves the initially flat fron
become more and more complicated. Notice the differenc
roughness between the last two cases, arising from a m
higher bending stiffness in the latter.

It would be reasonable to expect that the roughening
the wave front would belong to one of the usual universa
classes. Simulations show, however, that this is not the c
Instead, if one considers in a similar fashion the early ti
and the asymptotic interface widths, a very complicated

FIG. 8. Wave-front location~thick lines! at different times in
lattices with ~top! w50.001 andp50.98, ~middle! w51.0, and
p50.7, and~bottom! w520.0 andp50.7.
-
-

in
ch

f
y
e.

e
-

havior is encountered. We believe that this is due to the
that the wave-front velocity behaves differently in the tw
limits, as explained above. The situation is further comp
cated by the appearance of the transient velocity~cf. Fig. 6!.

In the limit of a vanishing axial or bending stiffness, it
possible to calculate the dynamics of the roughening exac
In the case of longitudinal waves and vanishing bend
stiffness, the wave will travel poorly in they direction along
the vertical bonds and the wave front can be considere
travel along independent straight paths until a missing b
is encountered and the propagation stops. This means
the average velocity will decrease exponentially with tim
(t). The average location of the wave frontxm(t) is then
given by

xm~ t !5
p~12pvt!

12p
, ~11!

wherev is the wave velocity in the case whenp51 @given
by Eqs.~3! and~7!#. Whent→`, xm will approach the value
p/(12p). The roughnessr (t) of the wave front is given by

r 2~ t !~12p!25p2@12pvt#2@12pvt11#1@p2p212pvt#

3@12~vt11!pvt1vtpvt11#1p2~12p!

3vt~vt11!@pvt2pvt21#. ~12!

When t→` the roughnessr (t) approaches the valu
Ap/(12p), which holds for allp except forp51. A com-
parison of Eq.~12! with numerical results is shown in Fig. 9
In this figure l 51, m51026, w50.001, E51.0, and the
frequency is 0.125. It is evident that Eq.~12! fits the simu-
lation results very well. Two further observations can also
made based on the Fig. 9: There is, in terms of the us
interface growth models, a trivial pinning transition th
takes place in the infinite time limit and the interface wid
does not depend on the system size. Interface dynamic
thus similar to that of the random deposition model, in whi
local fluctuations set the time dependence.

With a nonzero bending stiffness the situation becom
immediately more complicated. At early enough times t
front behavior may in some cases be of the Edwar
Wilkison type (b;1/4), i.e., there is a parallel correlatio
length along the interface dictated by diffusive dynamics.

FIG. 9. Roughness in lattices withl 51; m51026; w50.001;
E51.0; p50.7,0.8,0.9, and the frequency 0.125. The lines
given by Eq.~12!.
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longer time scales, however, there is no typical satura
behavior manifested by a size-dependent interface width

We next consider the case when the bending and a
stiffnesses are equal. In this case we are not able to calc
the roughness exactly. We expect, however, that the la
will behave more or less like a continuous medium w
randomly located holes. Then the wave-front roughn
should be governed by the Huygens principle. This is de
onstrated in Fig. 10. The wave-front patterns in this figu
are not exactly spherical shapes as predicted by the Huy
principle, but a slight distortion of the shape is expec
because the effective stiffness of the network is lower th
the average close to a hole. Furthermore, the velocity is
quite isotropic, which also causes a distortion of the norm
spherical shape.

The roughness of an interface governed by the Huyg
principle has been analyzed earlier as a model of spu
deposition for amorphous films@20#. A rough interface will
be subject to a smoothing effect caused by the lateral, s
chronous growth of peaks on the interface. This will cau
height differencesdh, a distancex0 apart, to be smoothene
out in a timet such that

dh}x0
2/vt, ~13!

wherev is the interface propagation velocity. Roughening
the interface will be induced by the uncorrelated rand
vacancies in the lattice. The average height fluctuations
sulting from this uncorrelated noise, will increase like

dh}~vt !1/2. ~14!

The roughness of an initially flat interface, induced by mi
ing bonds, will therefore increase liker}t1/2. Roughness will
then, however, reach a state when there is a balance bet
the two opposite mechanisms described by Eqs.~13! and
~14!. This happens when

dh}x0
2/~dh!2⇒dh}x0

2/3. ~15!

FIG. 10. Wave front at ten different times in a network wi
bonds only diluted in the shaded square close to the left bound
l 51, m50.01, andw51.0.
n
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In a lattice of linear sizeL the maximum height difference i
therefore proportional toL2/3, which means that the rough
ness exponent is 2/3. The corresponding crossover time s
is

tcrossover}x0
4/3/v. ~16!

What was not taken into account above, however, is the
fective decrease in the frequency of the first displacem
maximum. For lower frequencies, the details of the latt
are not as easily ‘‘felt’’ by the wave front. Intuitively, we
would expect this effect to have a decreasing effect on
roughness. In Fig. 11 we show the roughness obtained
simulations for networks of sizes 303300, 603300,
903300, and 1203300, with m5w5E51.0, p50.7, and
the frequency 0.125. The first wave front leaves the left e
of the network att52. As can be seen from the figure, th
transient signal affects the roughness of the front fort,10.
For 10,t,50 the roughness grows diffusively according
t1/2, as predicted by Eq.~14!. For late times the roughnes
decreases, which demonstrates that the decreasing freque

FIG. 12. Averaged wave-front roughness as a function of ti
in TLM lattices with p50.85 and vertical heights
Ly530,60,120,240; the driving frequency is 0.314. The dashed
is given byr (t)}t1/2.

ry,

FIG. 11. Averaged wave-front roughness as a function of ti
in lattices withp50.7 and vertical heightsLy530,60,90,120;l 51,
m51.0, w51.0, E51.0, and the frequency is 0.125. The fitted lin
is given byr (t)}t1/2. The inset shows the same data on a semilo
rithmic scale, with they axis rescaled byL20.5.
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of the wave front has a strong effect on roughness. T
roughness exponent 2/3 fits the data for the two largest
tems of Fig. 11, but the two smaller systems~303300, and
603300! have an asymptotic roughness that is too high
follow Eq. ~15!. We expect that these two small systems
not yet in the scaling region. The roughness exponent
fits best all the simulation data is therefore smaller than
~i.e., around 0.5!, which is demonstrated by the inset in Fi
11.

To further test Eqs.~14! and~15! we also used a numeri
cal algorithm @transmission line method~TLM ! wave au-
tomaton#, that solves the classical wave equation by direc
applying Huygens’s principle@21#. Using this model, we
again found that roughness grows diffusively (t1/2), but the
roughness exponent is lower than the 2/3 predicted by
~15!. A best fit to the data gave a roughness exponent aro
0.5 ~Fig. 12!.

V. DISCUSSION AND CONCLUSIONS

In summary, we have demonstrated that the propaga
velocity and the amplitude decay of the first displacem
maximum in randomly diluted square lattices of elas
beams can be largely understood within two simple mod
-

om
,

e,

e

e
s-

o
e
at
3

y

q.
nd

n
t

s.

In the limit of vanishing axial or bending modulus, a on
dimensional model correctly describes the dynamics of
wave front. When the bending and the axial moduli a
roughly equal, an effective-medium approximation co
bined with continuum elasticity theory is sufficient for d
scribing the wave-front propagation.

The roughness of the wave front can be exactly calcula
in the limit of a vanishing axial or bending modulus. In th
limit the first wave front is always localized and the avera
wave-front width is finite. As the time evolution is governe
by Poissonian fluctuations, this is a random-depositio
equivalent phenomenon for wave fronts. For beams that h
a nonvanishing bending stiffness, the two-dimensional ch
acter of wave propagation makes the roughening proces
semble ‘‘standard’’ kinetic roughening phenomena. Ho
ever, the dynamic behavior cannot be mapped to the stan
models, except perhaps at early times.

For roughly equal bending and axial moduli, the wav
front roughness grows initially liket1/2. For late times, Huy-
gens’s principle suggests a roughness exponent 2/3,
simulations gave an exponent close to 0.5. This discrepa
is still not fully understood but is probably due to finite-siz
effects.
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